I M.Tech-I Semester-Regular Examinations-February 2018

SOLID STATE MICROWAVE DEVICES (MICROWAVE & COMMUNICATION ENGINEERING)

Duration: 3 hoursMax. Marks: 60Answer the following questions.

- 1.a) Explain the physical structure and configurations of Microwave Transistors with suitable diagrams. 8 M
 b) A Ge-GaAs heterojunction transistor has Lattice constant a₁= 5.646A, Electron affinity X₁= 4eV, energy gap E_{g1}= 0.8eV in Ge and Lattice constant a₂= 5.653A, Electron affinity X₂= 4.07eV, energy gap E_{g2}= 1.43eV in GaAs. Find the conduction-band differential and the valence-band differential between Ge and GaAs. 7 M (OR)
- 2.a) Explain the principle and operation of MW Tunnel Diode and draw its V-I Characteristics.8 M
 - b) Discuss about amplification phenomena of Bipolar Transistor.7 M

3.a) Explain the physical structure and principle of operation	on of
Junction Field Effect Transistor.	8 M
b) A certain Si JFET has channel height $a=0.1\mu m$, electr	on
concentration $N_d = 8 \times 10^{17} \text{ cm}^{-3}$ and relative dielectric	
constant $ \in_{r} = 11.8 $. Calculate the pinch-off voltage V_{p} .	7 M
(OR)	
4.a) Explain about physical structure and performance	
characteristics of HEMT.	8 M
b) Discuss the Drain current and Transconductance of	
MOSFET.	7 M

5.a) Explain about differential Negative resistance and Two	-
valley model Theory in RWH Theory.	8 M

b) In n- type GaAs Gunn Diode electron density $n=10^{18}$ cm⁻³, electron density at lower valley $n_l=10^{10}$ cm⁻³, electron density at upper valley $n_u=10^8$ cm⁻³, and temperature T= 300⁰K. Determine the conductivity of the diode. 7 M (OR)

6.a) Distinguish between LSA diodes and InP diodes. 7 M

b) An LSA oscillator has conversion efficiency $\eta = 0.06$, multiplication factor M=3.5, threshold field $E_{th}= 320 kV/m$, device length L= 121µm, donor concentration $n_o=10^{21} m^3$, average carrier velocity $v_o = 1.5 \times 10^5 m/s$ and area A= 3 x 10⁻⁸ m². Determine the output power. 8 M

- 7.a) Explain about the principle and operation of READ diode and discuss its avalanche multiplication.8 M
 - b) Derive and discuss Negative resistance, Power output and Efficiency of IMPATT diode. 7 M

(OR)

- - b) In Parametric Devices how can you understand Non linear reactance and Manley Rower power relations?8 M