I M.Tech-I Semester-Regular Examinations-February 2018

SOLID STATE MICROWAVE DEVICES (MICROWAVE \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 60
Answer the following questions.
1.a) Explain the physical structure and configurations of Microwave Transistors with suitable diagrams.

8 M
b) A Ge-GaAs heterojunction transistor has Lattice constant $a_{1}=5.646 \mathrm{~A}$, Electron affinity $X_{1}=4 \mathrm{eV}$, energy gap $\mathrm{E}_{\mathrm{g} 1}=0.8 \mathrm{eV}$ in Ge and Lattice constant $\mathrm{a}_{2}=5.653 \mathrm{~A}$, Electron affinity $\mathrm{X}_{2}=4.07 \mathrm{eV}$, energy gap $\mathrm{E}_{\mathrm{g} 2}=1.43 \mathrm{eV}$ in GaAs. Find the conduction-band differential and the valence-band differential between Ge and GaAs.
2.a) Explain the principle and operation of MW Tunnel Diode and draw its V-I Characteristics.
b) Discuss about amplification phenomena of Bipolar Transistor.
3.a) Explain the physical structure and principle of operation of Junction Field Effect Transistor. 8 M
b) A certain Si JFET has channel height $\mathrm{a}=0.1 \mu \mathrm{~m}$, electron concentration $\mathrm{N}_{\mathrm{d}}=8 \times 10^{17} \mathrm{~cm}^{-3}$ and relative dielectric constant $\epsilon_{\mathrm{r}}=11.8$. Calculate the pinch-off voltage $\mathrm{V}_{\mathrm{p}} . \quad 7 \mathrm{M}$ (OR)
4.a) Explain about physical structure and performance characteristics of HEMT.
b) Discuss the Drain current and Transconductance of MOSFET.
5.a) Explain about differential Negative resistance and Twovalley model Theory in RWH Theory.

8 M
b) In n - type GaAs Gunn Diode electron density $\mathrm{n}=10^{18} \mathrm{~cm}^{-3}$, electron density at lower valley $n_{l}=10^{10} \mathrm{~cm}^{-3}$, electron density at upper valley $n_{u}=10^{8} \mathrm{~cm}^{-3}$, and temperature $\mathrm{T}=300^{\circ} \mathrm{K}$. Determine the conductivity of the diode.
6.a) Distinguish between LSA diodes and InP diodes. 7 M
b) An LSA oscillator has conversion efficiency $\eta=0.06$, multiplication factor $\mathrm{M}=3.5$, threshold field $\mathrm{E}_{\mathrm{th}}=320 \mathrm{kV} / \mathrm{m}$, device length $\mathrm{L}=121 \mu \mathrm{~m}$, donor concentration $\mathrm{n}_{0}=10^{21} \mathrm{~m}^{3}$, average carrier velocity $v_{0}=1.5 \times 10^{5} \mathrm{~m} / \mathrm{s}$ and area $A=3 \times 10^{-8} \mathrm{~m}^{2}$. Determine the output power.
7.a) Explain about the principle and operation of READ diode and discuss its avalanche multiplication. 8 M
b) Derive and discuss Negative resistance, Power output and Efficiency of IMPATT diode.
(OR)
8.a) An M-Si-M BARITT diode has the dielectric constant $€_{\mathrm{r}}=11.8$, donor concentration $\mathrm{N}=2.8 \times 10^{21} \mathrm{~m}^{-3}$ and silicon length $\mathrm{L}=6 \mu \mathrm{~m}$. Determine the breakdown voltage and the breakdown electric field.

7 M
b) In Parametric Devices how can you understand Non linear reactance and Manley - Rower power relations? 8 M

